Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of Lightweight Connecting Rod Based on Fatigue Resistance Analysis of Microalloyed Steel

1990-02-01
900454
Application of microalloyed steel to automobile parts is becoming increasingly common in Japan. However, fatigue properties of actual automotive forged parts with slight notches on their surface have not been fully clarified. In this work, the fatigue properties of microalloyed steel were studied using test specimens and also actual automotive parts. The results indicated that microalloyed steel with an optimal microstructure showed higher notch fatigue resistance than quenched-tempered steel. The improvement of material technology and the application of microalloyed steel have not only served to bring product costs down, but have paved the way for part weight reductions. Lightweight connecting rods for the newly developed Nissan engines have been produced, contributing to improved engine performance.
Journal Article

Development of Low Viscosity API SN 0W-16 Fuel-Saving Engine Oil Considering Chain Wear Performance

2017-03-28
2017-01-0881
A low viscosity API SN 0W-16 engine oil was developed to achieve a 0.5% improvement in fuel efficiency over the current GF-5/API SN 0W-20 oil. Oil consumption and engine wear are the main roadblocks to the development of low viscosity engine oils. However, optimization of the base oil and additives successfully prevent oil consumption and wear. First, it was confirmed in engine tests that NOACK volatility is still an effective indicator of oil consumption even for a low viscosity grade like 0W-16. As a result of base oil volatility control, the newly developed oil achieves the same level of oil consumption as the current GF-5/API SN 0W-20 oil. Second, it was found that the base oil viscosity and molybdenum dithiocarbamate (MoDTC) had a significant effect on chain wear in rig testing that simulated silent chain wear. For the same base oil viscosity, the new oil maintains the same oil film thickness under high surface pressure.
Technical Paper

Development of Microalloyed Steel for Fracture Split Connecting Rod

2007-04-16
2007-01-1004
In Europe and the U.S., fracture split connecting rods are used in many types of current engines. This process can eliminate the machining of crankshaft end and eliminate the dowel pin for positioning. The most important key for fracture split connecting rods is a reduction in the plastic deformation during the fracture splitting process. For this reason, sinter-forged materials and pearlitic steels (C70S6) are used for fracture split connecting rods because of their low ductility. Such types of steel, however, are inferior to the hot forged microalloyed steels typically used as connecting rod material in Japan in terms of buckling strength and machinability although they are easier to fracture split. On the other hand, the conventional microalloyed steels used for connecting rods in Japan are not suitable for fracture splitting. The reason is that these steels have too much ductility and associated plastic deformation for fracture splitting.
Technical Paper

Development of Mo-Free Ultra-High Strength 1.6-GPa Bolt with Delayed Fracture Resistance for Multi-Link Type Engine

2024-04-09
2024-01-2070
Mo-free 1.6-GPa bolt was developed for a Variable Compression Turbo (VC-Turbo) engine, which is environment friendly and improves fuel efficiency and output. Mo contributes to the improvement of delayed fracture resistance; therefore, the main objective is to achieve both high strength and delayed fracture resistance. Therefore, Si is added to the developed steel to achieve high strength and delayed fracture resistance. The delayed fracture tests were performed employing the Hc/He method. Hc is the limit of the diffusible hydrogen content without causing a delayed fracture under tightening, and He is the diffusible hydrogen content entering under a hydrogen-charging condition equivalent to the actual environment. The delayed fracture resistance is compared between the developed steel and the SCM440 utilized for 1.2-GPa class bolt as a representative of the current high-strength bolts.
Technical Paper

Development of Multi-Layer Plastic Fuel Tanks for Nissan Research Vehicle-II

1987-02-01
870304
Plastic fuel tanks are light in weight and rustproof, and have good design flexibility. For those currently in use, however, which are made of mono-layer high-density polyethylene, fuel permeability is too high to meet U.S. evaporative emission standards, which are stricter than those in Japan or the EEC. For minimize fuel permeation, the formation of a harrier layer of polyamide resin by multilayer (three-resin five-layer) blow molding is considered more promising than sulphonation or fluorination treatment of the polyethylene resin. This paper describes the fuel permeation mechanism, then outlines the development of a multi-layer plastic fuel tank, discussion its structural features and the development of resins.
Technical Paper

Development of Nissan High Response Ceramic Turbocharger Rotor

1986-08-01
861128
Nissan utilizes ceramics in the turbine rotor of turbochargers to improve acceleration response by reducing the inertia weight of the turbine rotor. Since ceramic material does not yield, a high degree of localized stress will cause it to fail. Therefore, in order to be able to apply this brittle material to a high-speed rotor under high-stress conditions, silicon nitride material has been improved, and a low-stress shape employing the three-dimensional finite element method developed. Furthermore, a new technique for bonding the ceramic rotor to a metal shaft is employed in order to reduce residual stress caused by the difference in thermal expansion coefficients between the ceramic and metal materials. Since the strength of ceramics varies widely, it was necessary to confirm the reliability of the ceramic rotor and evaluate its life of fatigue. This paper, then, describes the design philosophy, bonding method, reliability and durability of the ceramic rotor.
Technical Paper

Development of Pitting Resistant Steel for Transmission Gears

2001-03-05
2001-01-0827
It was found that pitting resistance of gears is strongly influenced by resistance to temper softening of carburized steel. The investigation about the influence of chemical compositions on hardness after tempering revealed that silicon, chromium and molybdenum are effective elements to improve resistance to temper softening and pitting resistance. Considering the production of gears, molybdenum is unfavorable because it increases hardness of normalized or annealed condition. Developed new steel contains about 0.5 mass% of silicon and 2.7 mass% chromium. The new steel has excellent pitting resistance and wear resistance. Fatigue and impact strength are equivalent to conventional carburized steels. Cold-formability and machinability of the new steel are adequate for manufacturing gears because of its ordinary hardness before carburizing. The new steel has already been put to practical use in automatic transmission gears. Application test results are also reported.
Technical Paper

Development of Plastic Region Tightening 1.6-GPa Ultra-High Strength Bolt with High Delayed Fracture Resistance

2019-04-02
2019-01-1116
A new variable compression turbo (VC-Turbo) engine, which has a multi-link system for controlling the compression ratio from 8:1 to 14:1, requires high axial force for fastening the multi-links because of high input loads and the downsizing requirement. Therefore, it was necessary to develop a 1.6-GPa tensile strength bolt with plastic region tightening. One of the biggest technical concerns is delayed fracture. In this study, quenched and tempered alloy steels were chosen for the 1.6-GPa tensile strength bolt.
Technical Paper

Development of Practical Heads-Up Display for Production Vehicle Application

1989-02-01
890559
THIS PAPER presents an advanced heads-up display which has been newly developed for use in 88 Nissan Silvia model. The HUD consists of a projector with a newly developed high brightness VFD and light-selective film used as a combiner which is coated on the windshield. This combination provides good display legibility even under bright sunlight. The display shows the vehicle speed in a three-digit reading at distance of more than one meter from the driver's eyes. The windshield-coated combiner conforms to U.S. safety standards concerning light transmittance, abrasion and other performance requirements. Experimental data are also presented which substantiate the HUD's high legibility and confirm its effect in enhancing the driver's attention toward the road ahead
Journal Article

Development of Resin Water Jacket Case for Traction Inverter Aiming to Downsizing and Light-Weighting

2022-03-29
2022-01-0719
The size and weight of the traction inverter needs to be reduced to ensure a sufficient cruising range of an electric vehicle. To this end, one approach involves changing materials of the inverter case from aluminum to resin. However, the resin in use of inverter case causes technical issues in terms of collision performance, electromagnetic compatibility (EMC), and cooling performance because of the difference in the material properties between the resin and the conventionally used aluminum. By solving the abovementioned issues, a resin water jacket case (hereinafter, resin water jacket) was successfully adopted with inverters designed for next-generation electric powertrain in mass production models for the first time. The resin-based structure had advantages to reduce the weight of the inverter case by ~35% and decrease the number of parts to ~3/5, compared to that for the conventional cases.
Technical Paper

Development of Thinnest Wall Catalyst Substrate

2002-03-04
2002-01-0358
The thinnest wall thickness of automotive catalyst substrates has previously been 30 μm for metal substrates and 50 μm for ceramic substrates. This paper describes a newly developed catalyst substrate that is the world's first to achieve 20-μm-thick cell walls. This catalyst substrate features low thermal capacity and low pressure loss. Generally, a thinner cell wall decreases substrate strength and heat shock resistance. However, the development of a “diffused junction method”, replacing the previous “wax bonding method”, and a small waved foil has overcome these problems. This diffused junction method made it possible to strengthen the contact points between the inner waved foil and the rolled foil compared with previous substrates. It was also found that heat shock resistance at high temperature can be much improved by applying a slight wave to the foil instead of using a plane foil.
Technical Paper

Development of Transient Knock Prediction Technique by Using a Zero-Dimensional Knocking Simulation with Chemical Kinetics

2004-03-08
2004-01-0618
A transient knock prediction technique has been developed by coupling a zero-dimensional knocking simulation with chemical kinetics and a one-dimensional gas exchange engine model to study the occurrence of transient knock in SI engines. A mixed chemical reaction mechanism of the primary reference fuels was implemented in the two-zone combustion chamber model as the auto-ignition model of the end-gas. An empirical correlation between end-gas auto-ignition and knock intensity obtained through intensive analysis of experimental data has been applied to the knocking simulation with the aim of obtaining better prediction accuracy. The results of calculations made under various engine operating parameters show good agreement with experimental data for trace knock sensitivity to spark advance.
Technical Paper

Development of a Ball Bearing Turbocharger

1990-02-01
900125
Nissan has added ball bearings to its “High-flow Ceramic Turbocharger”(1) (introduced in 1987) to improve acceleration response by reducing friction loss. The following programs were carried out in applying ball bearings to the turbocharger: Optimum bearing size and material were selected to assure long life; lubrication techniques were employed to achieve compatibility between acceleration response and durability; a thrust support system was designed to assure that the ball bearings endure thrust load which varies in direction and magnitude during engine operation; and the squeeze film damper was optimized to keep the turbocharger silent. These innovations have resulted in a practical ball-bearing turbocharger, which has been installed in Nissan's most recent Skyline model(released in May 1989). This is the first time a ball-bearing turbocharger has been applied to a passenger car.
Technical Paper

Development of a High-Performance Dash Silencer Made of a Novel Shaped Fiber Sound-Absorbing Material

1996-02-01
960192
Interior quietness has been improved year by year until it has now become one of the basic performance requirements of vehicles. Traditional approaches to assuring quietness have been to increase the weight of sound insulation barriers or to enlarge sound insulation space. Such methods run counter to the aims of reducing vehicle weight and providing a more spacious interior. In this research, an attempt was made to overcome this trade-off by adopting a new material for the sound-absorbing material used in vehicles. The newly developed-sound absorbing material consists mainly of modified cross-section polyester fabric. It provides noticeably higher sound-absorbing performance than traditional material like shoddy or formed urethane. This is attributed to increased friction between the fibers and air, owing to the greater surface aria of the modified cross-section polyester fiber compare with that of the circular cross-section of ordinary fibers at an identical weight.
Technical Paper

Development of a High-Performance TiA1 Exhaust Valve

1996-02-01
960303
A new high-performance and lightweight TiA1 intermetallic compound exhaust valve has been developed. The TiA1 valve can improve power output and fuel economy by contributing higher engine speeds and a reduction in valvetrain friction. It was achieved by developing a Ti-33.5A1-0.5Si-1Nb-0.5Cr (mass%) intermetallic compound, a precision casting method for TiA1 that provides a low-cost, high-quality process, and a plasma carburizing technique for assuring good wear resistance on the valve stem end, stem and face.
Technical Paper

Development of a Highly Efficient Manufacturing Method for a Plastic Intake Manifold

2002-03-04
2002-01-0605
A plastic intake manifold has been developed for the new QR engine. This manifold has an intricate shape owing to its performance and layout requirements. The die slide injection (DSI) method was selected to manufacture this complicated shape using the world's first application of a common mold forming technique for a three-piece structure. This paper describes the manufacturing technology and the measures adopted to ensure the strength of welded parts, which is a key point of this method. The benefits obtained by applying this plastic intake manifold to the new engine are also described.
Technical Paper

Development of a Lubricant for Retrofitting Automotive Air Conditioners for Use with HFC-134a

1994-03-01
940594
This paper presents a new refrigeration lubricant for use with the HFC-134a retrofit refrigerant in automotive air-conditioning systems originally designed to use the CFC-12 refrigerant, one of the regulated CFCs scheduled to be phased out. This new retrofit lubricant provides high lubricity and excellent performance characteristics as a result of adopting a newly developed PAG base oil with a block polymer structure and a new antiwear additive formulation. In retrofit systems, it assures sufficient durability for wobble-plate-type variable displacement compressors, which experience severe lubrication conditions.
Technical Paper

Development of a New Driving Posture Focused on Biomechanical Loads

2006-04-03
2006-01-1302
Fatigue resulting from long-term driving can be classified into physical and mental fatigue. Physical fatigue seems to be mainly caused by driving posture. The purpose of this study is to develop a new driving posture for reduction of causal factors of physical fatigue, that is, biomechanical loads caused by the posture. In this paper, driving posture was optimized by subjective optimizations of seat contours and biomechanical analysis considering necessary conditions for driving operations and forward view. The new driving posture was tested by subjective evaluations and pelvic movement measurements. It was found that the new posture reduced physical fatigue dramatically.
Technical Paper

Development of a New HC-Adsorption Three-Way Catalyst System for Partial-ZEV Performance

2003-05-19
2003-01-1861
This paper describes a newly developed HC-adsorption three-way catalyst and adsorption system that reduce cold-start HC emissions with high efficiency. This system is the first of its kind anywhere in the world to be implemented on production vehicles. An overview is given of the various improvements made to achieve higher cold-start HC conversion efficiency. Improvement of conversion performance was accomplished by (1) increasing the thermal stability of the HC adsorbent, (2) improving desorbed HC conversion efficiency and durability and (3) optimizing the geometric surface area (GSA) of the substrate. Concretely, the thermal stability of the adsorbent was improved by enhancing the high-temperature durability of zeolite. Improvement of desorbed HC conversion efficiency was accomplished by improving the OSC material so as to match the temperature rise characteristic and usage temperature of the catalyst.
Technical Paper

Development of a New-Generation High-Performance 4.5-liter V8 Nissan Engine

1990-02-01
900651
This paper describes a new 4.5-liter V8 engine, VH45DE, which was developed for use in the INFINITI Q45 sporty luxury sedan that was released in the U.S. and Japanese markets in November 1989. The many V8 engines in use around the world can be broadly devided into two categories. One category is characterized by ample torque at low engine speed and relatively large engine displacement. The other category is characterized by enhanced performance at relatively high engine speeds. The VH45DE engine is a new-generation V8 powerplant that delivers smooth power output at top-end speed and also generates ample torque at low engine speed to maintain good idle stability, and accomplishes it all with the smallest possible displacement. Development efforts were focused on two main goals. The first was to achieve efficient intake air charging. This has been accomplished the intake air resonant point at a relatively high engine speed through appropriate intake branch and collector tuning.
X